
CHAPTER 12

Instrumental Variables Estimation

1. Instrumental Variables

Consider the following regression model with endogeneity: for all i = 1, 2, ..., n,

Yi = X ′iβ0 + ui

where Eui = 0, Eu2
i = σ2, and EXiui 6= 0. The k × 1 vector Xi is a column vector of endogeneous

regressors. In this case, without further restrictions or additional data sets, we cannot identify β0. Now,
suppose that we have an observed random vector Zi ∈ Rd for each individual i that satisfies the following
restriction:

(Validity) EZiui = 0, and
(Relevance) EZiX

′
i is full column rank k.

When an observed random vector Zi satisfies these two conditions, the random vector is called a vector of
instrumental variables. When we have such a random vector, we can identify β0 in the following way:

β0 =
[
(E [ZiX

′
i])
′
(E [ZiX

′
i])
]−1

(E [ZiX
′
i])
′
E [ZiYi] .

Note that when EZiX
′
i is not full column rank k, the matrix (E [ZiX

′
i])
′
(E [ZiX

′
i]) is not invertible. The

relevance condition tells us that we need to have at least k number of instrumental variables. This rank
condition is violated when Zi and Xi are uncorrelated:

EZiX
′
i = EZiEX

′
i.

The last matrix is of rank one. (Recall that rk(AB) ≤ min{rk(A), rk(B)} for any conformable matrices A
and B.) Suppose that a m × 1 subvector X1i of Xi is known to be uncorrelated with ui, so that X1i is in
fact exogenous. Then, we can include this subvector X1i in the instrument vector Zi. Hence we need to
find at least k−m number of instrumental variables to identify the parameter β0. The number k−m is the
number of endogenous regressors in Xi.

Let Zi ∈ Rd and Xi ∈ Rk. When d > k so that the number of instrumental variables is larger than
the dimension of Xi, we say that the model is overidentified. When d = k, we say that the model is exactly
identified. In this case of exact identification, we identify β0 as

β0 =
[
(E [ZiX

′
i])
′
(E [ZiX

′
i])
]−1

(E [ZiX
′
i])
′
E [ZiYi]

= (E [ZiX
′
i])
−1
(
E [ZiX

′
i]
′
)−1

(E [ZiX
′
i])
′
E [ZiYi]

= (E [ZiX
′
i])
−1

E [ZiYi] .

The most difficult part of this identification strategy is to find an instrumental variable. A typical
strategy is to find an exogenous variable which influences the dependent variable Yi only through affecting
the regressor Xi. The requirement that it affects Xi fulfills the relevance condition, and affects Yi without
affecting ui fulfills the validity condition. Such an exogeneous variable can be found through natural
phenomenon such as temperature variations, rainfalls, or government tax system changes which affect
individuals differently. There is no general method of finding a convincing instrumental variable. It is dealt
with case by case.
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104 12. INSTRUMENTAL VARIABLES ESTIMATION

2. Estimation

2.1. Method of Moment Estimation

The least squares estimator under exogeneity can be thought of as a method of moments estimator,
with the exogeneity condition EXiui = 0 producing the moment condition:

EXi(Yi −X ′iβ0) = 0.

Then, the least squares estimator is the minimizer of the Euclidean norm of the sample version of the
expectation:

β̂ = arg min
β∈Rk

∥∥∥∥∥ 1

n

n∑
i=1

Xi(Yi −X ′iβ)

∥∥∥∥∥
2

.

This way of obtaining an estimator is called method of moments estimation. The moment condition from
the exogeneity condition is not uniquely written. For any k × k matrix S such that S′S is positive definite,
one has the following moment condition:

SEXi(Yi −X ′iβ0) = 0.

Therefore, alternatively, one may come up with an estimator by solving the following problem.

β̂S = arg min
β∈Rk

∥∥∥∥∥ 1

n

n∑
i=1

Xi(Yi −X ′iβ)

∥∥∥∥∥
2

S

,

where ||A||2S = tr (A′S′SA) . The resulting estimator takes the following form:

β̂S = arg min
β∈Rk

(
1

n

n∑
i=1

Xi(Yi −X ′iβ)

)′
S′S

(
1

n

n∑
i=1

Xi(Yi −X ′iβ)

)
= arg min

β∈Rk
(SX ′y − SX ′Xβ)

′
(SX ′y − SX ′Xβ) ,

where y = [Y1, ..., Yn]′. Therefore, the solution is from projecting SX ′y onto R(SX ′X). Using the least
squares formula: [

(SX ′X)
′
(SX ′X)

]−1

(SX ′X)
′
SX ′y

= [X ′XS′SX ′X]
−1
X ′XS′SX ′y

= (X ′X)−1 (S′S)
−1

(X ′X)−1X ′XS′SX ′y

= (X ′X)−1X ′y.

Therefore, the use of S does not alter the least squares estimator.1

In general, the choice of S may affect the estimator and its asymptotic variance. Then one may ask
what choice of S will yield the smallest asymptotic variance. Such a choice of S yields the optimal weighting
matrix S′S. The optimal weighting matrix may depend on the distribution of (Yi, Xi). However, we can
replace the weighting matrix by a consistent estimator. After this replacement, the asymptotic distribution
of the estimator remains unchanged.

1This is different from the GLS. Note that we can rewrite β̂S as

β̂S = arg min
β∈Rk

(y −Xβ)′ Σ (y −Xβ)

where Σ = XS′SX′. Suppose that we have Euu′ = Ω, where u = [u1, · · ·, un]′. Then, the GLS is given by

β̂GLS = arg min
β∈Rk

(y −Xβ)′ Ω−1 (y −Xβ)

or β̂GLS = (X′Ω−1X)−1X′Ω−1y. However, there is no S such that

Σ = XS′SX′ = Ω−1

because XS′SX′ is not invertible, having rank k not n.
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Now, suppose that the regression model is in fact endogenous, but fortunately, we have instrumental
variables Zi. In this case, the validity condition of Zi tells us that EZiui = 0. Hence for any s× d matrix S
such that S′S is positive definite (this already requies that s ≥ d), we can write

SEZi(Yi −X ′iβ0) = 0.

In fact, by the validity and relevance condition for Zi, there exists a unique value of β0 that satisfies the
above equation. In other words, β0 is identified by the moment equality restrictions.

The method of moments estimation suggests that we estimate β0 in the following way:

β̂IVS = arg min
β∈Rk

∥∥∥∥∥ 1

n

n∑
i=1

Zi(Yi −X ′iβ)

∥∥∥∥∥
2

S

= arg min
β∈Rk

(
1

n

n∑
i=1

Zi(Yi −X ′iβ)

)′
S′S

(
1

n

n∑
i=1

Zi(Yi −X ′iβ)

)
= arg min

β∈Rk
(Z ′(Y −Xβ))

′
W (Z ′(Y −Xβ))

= arg min
β∈Rk

(
W 1/2Z ′Y −W 1/2Z ′Xβ

)′ (
W 1/2Z ′Y −W 1/2Z ′Xβ

)
where W = S′S and

Y =

 Y1

...
Yn


n×1

, Z =

 Z ′1
...
Z ′n


n×d

and X =

 X ′1
...
X ′n


n×k

.

By projecting YZ ≡ W 1/2Z ′Y onto R(XZ) ≡ R(W 1/2Z ′X), with XZ ≡ W 1/2Z ′X, we obtain the
following:

β̂IVS = (X ′ZXZ)−1X ′ZYZ

= (X ′ZWZ ′X)
−1
X ′ZWZ ′Y.

Now, let us study the asymptotic properties of the estimator β̂IVS . We assume the following:

(A1) {(X ′i, Z ′i, ui)}ni=1 is i.i.d. such that E||X1||4 <∞ and E||Z1||4 <∞.
(A2) Eu1 = 0 and E[u2

1|Z1] = σ2, for some constants σ2 > 0.
(A3) EZ1u1 = 0 and EZ1X

′
1 is full column rank k.

(A4) EZ1Z
′
1 is invertible.

Observe that

β̂IVS − β0 = (X ′ZWZ ′X)
−1
X ′ZWZ ′u

=

[(
1

n

n∑
i=1

XiZ
′
i

)
W

(
1

n

n∑
i=1

ZiX
′
i

)]−1

×

(
1

n

n∑
i=1

XiZ
′
i

)
W

(
1

n

n∑
i=1

Ziui

)
→p [(EXiZ

′
i)W (EZiX

′
i)]
−1

(EXiZ
′
i)W (EZiui) = 0.

Hence the estimator is consistent. Now, let us consider the asymptotic normality of the estimator. Write

√
n(β̂IVS − β0) =

[(
1

n

n∑
i=1

XiZ
′
i

)
W

(
1

n

n∑
i=1

ZiX
′
i

)]−1

(2.1)

×

(
1

n

n∑
i=1

XiZ
′
i

)
W

(
1√
n

n∑
i=1

Ziui

)
.
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By the multivariate central limit theorem, we have

1√
n

n∑
i=1

Ziui →d N(0, σ2E [ZiZ
′
i]).

(Note that we use homoskedasticity assumption E[u2
1|Z1] = σ2.) Therefore, using the weak law of large

numbers and Slutsky’s Theorem, we obtain that
√
n(β̂IVS − β0)→d [(EXiZ

′
i)W (EZiX

′
i)]
−1

(EXiZ
′
i)W × ζ,

where ζ ∼ N(0, σ2E [ZiZ
′
i]). Now, the asymptotic covariance matrix of β̂IVS is given by

σ2 [(EXiZ
′
i)W (EZiX

′
i)]
−1

(EXiZ
′
i)WE [ZiZ

′
i]W (EZiX

′
i) [(EXiZ

′
i)W (EZiX

′
i)]
−1
.(2.2)

2.2. Two Stage Least Squares Estimation

We have seen that β0 can be estimated multiple different ways depending on the choice of the weight-
ing matrix W as long as it is symmetric and positive definite. When the model is just identified, i.e., d = k,
the asymptotic variance matrix is given by

σ2 [EZiX
′
i]
−1

E [ZiZ
′
i] [EXiZ

′
i]
−1
.(2.3)

In other words, the asymptotic variance does not depend on W . However, when the model is over-
identified, the choice of W matters. Each estimator with each choice of W has different asymptotic distri-
bution with different asymptotic variance matrix. Thus, in this case, one might wonder which choice of W
is “best”. We call W an optimal weighting matrix if W minimizes the asymptotic covariance matrix of β̂IVS .

Theorem 1: The optimal weighting matrix W is given by

W = (E [ZiZ
′
i])
−1
.

Proof: When we take W = (E [ZiZ
′
i])
−1, the asymptotic covariance matrix becomes

σ2
{

(EXiZ
′
i) (E [ZiZ

′
i])
−1

(EZiX
′
i)
}−1

.

One can check the following:

(EXiZ
′
i) (E [ZiZ

′
i])
−1

(EZiX
′
i)

− (EXiZ
′
i)W (EZiX

′
i) [(EXiZ

′
i)WE [ZiZ

′
i]W (EZ ′iXi)]

−1
(EXiZ

′
i)W (EZiX

′
i)

= (EXiZ
′
i) (E [ZiZ

′
i])
−1/2 {I − P} (E [ZiZ

′
i])
−1/2

(EZiX
′
i) ≥ 0

where

P = (E [ZiZ
′
i])

1/2
W (EZiX

′
i) [(EXiZ

′
i)WE [ZiZ

′
i]W (EZ ′iXi)]

−1
(EXiZ

′
i)W (E [ZiZ

′
i])

1/2
.

Note that P is symmetric and idempotent, and hence it is positive semidefinite. The proof is complete. �

Since we do not know the expectation E [ZiZ
′
i], we consider using its sample version:(

1

n

n∑
i=1

ZiZ
′
i

)−1

=

(
Z ′Z

n

)−1

.

Using (Z ′Z/n)−1 as our W , we obtain the IV estimator as:

β̂IV =
(
X ′Z(Z ′Z)−1Z ′X

)−1
X ′Z(Z ′Z)−1Z ′Y

= (X ′PZX)
−1
X ′PZY,

where PZ = Z(Z ′Z)−1Z ′ is the projection matrix onto R(Z). And
√
n(β̂IV − β0)→d N

(
0, σ2

{
(EXiZ

′
i) (E [ZiZ

′
i])
−1

(EZiX
′
i)
}−1

)
.
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Suppose that we are in the situation of overidentification. Then one may consider Z̃i = HZi as another
instrumental variable for some d× d matrix H such that H ′H is positive definite and consider the moment
condition

SEZ̃i(Yi −X ′iβ0) = 0.

Theorem 1 tells us that the estimator β̂IVS using Z̃i instead of Z̃i is not better than β̂IV that uses the optimal
weighting matrix, (Z ′Z/n)−1. Hence one cannot improve the quality of the IV estimator over β̂IV simply
by reshuffling the instrumental variables.

Theorem 1 has another important implication. When d > k, there are multiple ways to identify the
same β0. For example, we can identify β0 using only a subvector Z1i ∈ Rm, k ≤ m < d, of Zi such that
EXiZ

′
1i is still full column rank k. Then, we can construct, say, β̂IV1 , using Z1i in place of Zi. In general,

the IV estimator that uses Z1i as the IV will be different from that uses Zi as the IV. Let us compare the
quality of the two estimators β̂IV and β̂IV1 .

Theorem 2: The asymptotic covariance matrix of β̂IV1 is larger than or equal to that of β̂IV .

Proof: The asymptotic covariance matrix of β̂IV1 is given by

σ2
{

(EXiZ
′
1i) (E [Z1iZ

′
1i])
−1

(EZ1iX
′
1i)
}−1

.

Let A be a m× d selection matrix such that AZi = Z1i. Then, we can rewrite the inverse of the asymptotic
covariance matrix as

(EXiZ
′
i)A

′ (AE [ZiZ
′
i]A
′)
−1
A (EZiX

′
i) .

Similarly as in the proof of Theorem 1,

(EXiZ
′
i) (E [ZiZ

′
i])
−1

(EZiX
′
i)

− (EXiZ
′
i)A

′ (AE [ZiZ
′
i]A
′)
−1
A (EZiX

′
i)

= (EXiZ
′
i) (E [ZiZ

′
i])
−1/2

{
I − (E [ZiZ

′
i])

1/2
A′ (AE [ZiZ

′
i]A
′)
−1
A (E [ZiZ

′
i])

1/2
}

× (E [ZiZ
′
i])
−1/2

(EZiX
′
i) .

(Note that (AE [ZiZ
′
i]A
′) will not be invertible if m > d.) Now, observe that

(E [ZiZ
′
i])

1/2
A′ (AE [ZiZ

′
i]A
′)
−1
A (E [ZiZ

′
i])

1/2

is symmetric and idempotent. Hence the above matrix is positive semidefinite. The proof is complete. �

This implies that the quality of the estimator becomes worse, when we remove some of the intrumental
variables. Since PZ = P 2

Z , let X∗ = PZX. Then, we can rewrite the IV estimator as

β̂IV = (X∗′X∗)
−1
X∗′Y.

Therefore, the IV estimator is obtained, in the first stage, by projecting X onto R(Z), which means that we
regress first X on Z and obtain the predicted value PZX, and then in the second stage, we project Y onto
R(PZX), which means that we regress Y on PZX. The resulting estimator of β0 is β̂IV . For this reason,
the estimator β̂IV is often called a two stage least squares estimator (2SLS).

More specifically, consider the following simultaneous equation model:

Yi = tiβ1 +W ′iβ2 + ui,(2.4)

ti = Z ′1iπ1 +W ′iπ2 + vi,

where ti is a scalar random variable and Wi is a k1 × 1 vector and k = k1 + 1. Let Z1i be a (d − k1) × 1
vector such that d− k1 ≥ 1. We assume that Z1i is a vector of instrumental variables that are not included
in the endogenous regresssion model. We set

Zi =

[
Z1i

Wi

]
.
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Furthermore, we assume that

Etiui 6= 0,

EWiui = 0,

EZiui = 0, and

EZivi = 0.

Therefore, ti is a one-dimensional endogenous variable and Wi is a vector of exogenous variables and Zi
is a vector of instrumental variables. Then each entry, say, t̂i, of PZt is the predicted value of ti from
regressing ti on Zi, (this is the first stage regression) and also PZW = W , where

t =


t1
t2
...
tn

 and W =


W ′1
W ′2

...
W ′n

 ,
because W belongs to R(Z). We take Xi = [ti,W

′
i ]. Then the 2SLS estimator of β = (β1, β

′
2)′ is obtained

by regressing Yi on the t̂i and Wi. (This is the second stage regression.)
One should be careful in implementing this using a built-in regression command in the software. The

standard errors generated from the second stage regression is not correct in general, because the resulting
standard error is based on the following estimator of σ2 :

1

n

(
Y − PZXβ̂IV

)′ (
Y − PZXβ̂IV

)
.

However, the correct estimator of σ2 is 1
n

(
Y −Xβ̂IV

)′ (
Y −Xβ̂IV

)
.

2.3. Overidentifying Restrictions Test

One may wonder if there is any way to formally check whether Zi is a plausible instrumental variable.
In this situation, we need to check whether Zi satisfies the validity condition and the relevance condition.
For the validity condition, the check amounts to testing the moment condition:

H0 : EZi(Yi −X ′iβ0) = 0.(2.5)

H1 : EZi(Yi −X ′iβ0) 6= 0.

A natural starting point in constructing a test is first to see whether the sample version of the moment:

1

n

n∑
i=1

Ziûi

is close to zero or not, where

ûi = Yi −X ′iβ̂IV ,

and β̂IV is a two-stage least squares estimator.
One should be careful here. If k = d, i.e., the model is exactly identified, the above sample version is

zero always by the definition of β̂IV , regardless of whether the null hypothesis holds or not, and hence we
cannot use it as a basis for our test. However, when the model is overidentified, this idea of testing the
moment condition works. The idea follows that of the Wald test. First define

J = n

(
1

n

n∑
i=1

Ziûi

)′
Ĉ

(
1

n

n∑
i=1

Ziûi

)
,

where

Ĉ =

(
1

n

n∑
i=1

û2
iZiZ

′
i

)−1

.

Let us consider the following conditions.
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(C1) E[‖Xi‖4] + E[‖Zi‖4] <∞.
(C2) E[u2

i |Zi] = σ2.
(C3) E[ZiZ

′
i] is positive definite.

Theorem 1: Suppose that Conditions (C1)-(C3) hold. Then, under the null hypothesis,

Jd →d χ
2
d−k.

Proof: First, note that

1

n

n∑
i=1

û2
iZiZ

′
i =

1

n

n∑
i=1

u2
iZiZ

′
i +

1

n

n∑
i=1

(û2
i − u2

i )ZiZ
′
i.

Let the (m, `)-th entry of ZiZ ′i be denoted by Hm,`,i. We show that for each m, ` = 1, ..., d,

1

n

n∑
i=1

(û2
i − u2

i )Hm,`,i = oP (1).

Then this proves that

1

n

n∑
i=1

(û2
i − u2

i )ZiZ
′
i = oP (1).

Write

1

n

n∑
i=1

(û2
i − u2

i )Hm,`,i

=
1

n

n∑
i=1

(ûi − ui)(ûi + ui)Hm,`,i

= 2
1

n

n∑
i=1

(ûi − ui)uiHm,`,i +
1

n

n∑
i=1

(ûi − ui)2Hm,`,i.

Since

ûi − ui = −X ′i(β̂IV − β),

we write

1

n

n∑
i=1

(ûi − ui)(ûi + ui)H
′
m,`,i

= −2

(
1

n

n∑
i=1

Hm,`,iuiX
′
i

)
(β̂IV − β) + (β̂IV − β)′

(
1

n

n∑
i=1

XiX
′
iHm,`,i

)
(β̂IV − β)′.

Since β̂IV is a consistent estimator of β, by the Law of the Large Numbers and Slutsky’s lemma, the above
terms are oP (1). This implies that

1

n

n∑
i=1

û2
iZiZ

′
i =

1

n

n∑
i=1

u2
iZiZ

′
i + oP (1) = E[u2

iZiZ
′
i] + oP (1)

= σ2E[ZiZ
′
i] + oP (1),

the second to the last equality coming from the Law of the Large Numbers, and the last equality coming
from the conditional homoskedasticity assumption (C2). Letting

C = (σ2E[ZiZ
′
i])
−1,

we conclude that

Ĉ = C + oP (1).(2.6)
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We write

Ĉ1/2 1√
n

n∑
i=1

Ziûi

= Ĉ1/2 1√
n

n∑
i=1

Ziui + Ĉ−1/2 1√
n

n∑
i=1

Zi(ûi − ui) = A1n +A2n, say.

By the Central Limit Theorem,

1√
n

n∑
i=1

Ziui →d N(0,E[u2
iZiZ

′
i]),

and hence it is OP (1). Therefore,

Ĉ1/2 1√
n

n∑
i=1

Ziui = C1/2 1√
n

n∑
i=1

Ziui + oP (1).

Let us turn to A2n. Write it as

−Ĉ1/2

(
1√
n

n∑
i=1

ZiX
′
i

)
(β̂IV − β)

= −Ĉ1/2

(
1

n

n∑
i=1

ZiX
′
i

)( 1

n

n∑
i=1

XiZ
′
i

)(
1

n

n∑
i=1

ZiZ
′
i

)−1(
1

n

n∑
i=1

ZiX
′
i

)−1

×

(
1

n

n∑
i=1

XiZ
′
i

)(
1

n

n∑
i=1

ZiZ
′
i

)−1(
1√
n

n∑
i=1

Ziui

)
.

(See (2.1).) Applying the Law of of the Large Numbers, Slutsky’s Lemma and (2.6), we find that

A2n = −C1/2E[ZiX
′
i]
[
E[XiZ

′
i]
(
σ2E[ZiZ

′
i]
)−1

E[ZiX
′
i]
]−1

×E[XiZ
′
i]
(
σ2E[ZiZ

′
i]
)−1 1√

n

n∑
i=1

Ziui + oP (1).

We conclude that

A1n +A2n = PC1/2 1√
n

n∑
i=1

Ziui + oP (1),(2.7)

where

P = I − C1/2E[ZiX
′
i]
[
E[XiZ

′
i]
(
σ2E[ZiZ

′
i]
)−1

E[ZiX
′
i]
]−1

E[XiZ
′
i]C

1/2.

It is not hard to see that P is symmetric and idempotent and hence is a projection matrix. By the Central
Limit Theorem, we find that

C1/2 1√
n

n∑
i=1

Ziui →d N(0, Id).

Since

J = (A1n +A2n)′(A1n +A2n)→d χ
2
rk(P ).

The rank of P is d− k, delivering the desired result. �

Inspecting the proof shows that the premuliplication by projection matrix P in (2.7) arises due to the
term that comes from ûi − ui. If we knew ui and used it in place of ûi in constructing J test statistic, the
test statistic would have limiting distribution χ2

d. However, we used part of the data to estimate β to obtain
ûi, and this leads to the reduction in the degree of freedom in the χ2

d−k distribution.
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Thus, the overidentifying restrictions test rejects the null hypothesis if J is larger than the critical value
from the distribution χ2

d−k distribution. The test is also called a J test.

3. Relevance of IV

3.1. Testing for the Relevance of IV

The relevance of the IV can be tested by considering the following regression model:

ti = Z ′1iπ1 +W ′iπ2 + vi.

When all the parameters in π1 are significantly different from zero, we take this as evidence in favor of the
relevance condition. The null hypothesis is taken to be

H0 : π1 = 0 against

H1 : π1 6= 0.

The test can be done by using the usual F-test. The failure of the rejection of the null hypothesis indicates
the problem with the relevance of the IV. However, one needs to be careful that the F-test that we are using
is not the one that testing H0 : π1 = π2 = 0. If we reject the null hypothesis of this latter form, this does
not say that the instrumental variable is relevant with statistical significance.

3.2. Weak Instruments

Certainly the relevance condition that E[XZ ′] is full row rank k is necessary for the identification of
β0. When the rank of E[XiZ

′
i] almost fails to be k (e.g. having the smallest nonzero eigenvalue is close to

zero), we say that the instrument Zi is a weak instrument. This happens especially when the correlations
between an entry of Zi and all the elements of Xi are close to zero. In this case, the asymptotic normal
distribution of the IV estimator may not be a good approximation of its fininte sample distribution. First,
let us consider an extreme situation where there is no correlation between the endogenous regressor and
the instrumental variable. Observe that

β̂IV − β0 =

( 1

n

n∑
i=1

XiZ
′
i

)(
1

n

n∑
i=1

ZiZ
′
i

)−1(
1

n

n∑
i=1

ZiX
′
i

)−1

×

(
1

n

n∑
i=1

XiZ
′
i

)(
1

n

n∑
i=1

ZiZ
′
i

)−1(
1

n

n∑
i=1

Ziui

)

=

( 1

n

n∑
i=1

XiZ
′
i

)(
1

n

n∑
i=1

ZiZ
′
i

)−1(
1√
n

n∑
i=1

ZiX
′
i

)−1

×

(
1

n

n∑
i=1

XiZ
′
i

)(
1

n

n∑
i=1

ZiZ
′
i

)−1(
1√
n

n∑
i=1

Ziui

)
,

by multiplying by
√
n and dividing by

√
n. Since EZiX

′
i = 0 and EZiui = 0, we have

1√
n

n∑
i=1

Zi[X
′
i, ui]→d N (0,E [[X ′i, ui]

′ZiZ
′
i[X
′
i, ui]]) ,

and (
1

n

n∑
i=1

XiZ
′
i

)(
1

n

n∑
i=1

ZiZ
′
i

)−1
1√
n

n∑
i=1

ZiX
′
i →d N(0, V )

where [X ′i, ui] is a 1 × (k + 1) row vector, and V is a positive definite matrix. Therefore, β̂IV − β0 con-
verges in distribution to a random quantity that is non-normal in general, and the estimator β̂IV is not
consistent. This means that the limiting distribution of

√
n(β̂IV − β0) behaves discontinuously as we move

from a distribution with E[XZ ′] is full column rank to a distribution with E[XZ ′] = 0. This discontinuity
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happens purely because we have sent n→∞. In finite samples, the exact distribution of β̂IV may change
continuously as we move one distribution toward a distribution with E[XZ ′] = 0. Therefore, when the
underlying distribution is such that E[XZ ′] is full column rank but close to zero, the asymptotic distribu-
tion of β̂IV will be one that is obtained under the usual relevance condition for the IV. However, the finite
sample distribution of β̂IV is expected to be closer to one under E[XZ ′] = 0. The standard errors based
on the asymptotic normality of β̂IV cannot be a reliable one. This problem is called a weak instrument
problem. Usually, the weak intrument problem is detected by checking the relevance condition using the
observations. When it is suspected that there is a weak instrument, one has to rely on a different asymptotic
theory that reflects this situation.

How do I know if my regression may suffer from the weak IV problem? Consider the situation where
there is only one endogenous regressor denoted by ti as in the model of (2.4). The first idea will be that
one performs an F-test in the regression of ti on the IVs in the regression equation:

ti = Z ′1iπ1 +W ′iπ2 + vi.

The null hypothesis is taken to be

H0 : π1 = 0 against H1 : π1 6= 0.

The rule-of-thumb critical value for this F -test at 5% is 10. This rule is different from the usual F -test,
because this rule is based on the null hypothesis that is weaker than the conventional null hypothesis that
the regression coefficients in the first stage regression are all zero. The former null hypothesis covers not
only the latter null hypothesis but also the case where the coefficients are very close to zero.

If you have only one endogenous regressor and at least one instrument that is strongly relevant, there
is no weak instrument problem. However, if all the instruments are weak, you need to use a different
standard error formula that is robust to the weakness of the instruments. The inference under weak
instruments lies beyond the scope of this course, and interested students are referred to advanced textbook
that contains topics on weak instruments.
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